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Abstract 

Hash tables are essential for fast data storage and retrieval; however, managing collisions 

remains a core challenge that affects overall efficiency. This research aims to evaluate and 

compare the performance of three prominent collisions   resolution strategies; Linear Probing, 

Quadratic Probing, and Double Hashing in hash tables. To achieve this, C++ implementation 

was developed, and synthetic datasets of varying sizes were generated to simulate different 

load conditions. The research employed experimental method, measuring key performance 

indicators such as execution time, number of collisions and memory consumption across 

multiple trials were employed to assess performance under varying load factors. 

The results reveal that Linear Probing is prone to primary clustering leading to significant 

performance degradation as the load factor increases. Quadratic Probing mitigates clustering 

more effectively but encounter limitations when its probing sequence cycles. Double Hashing 

consistently outperforms the other techniques, delivering superior results through more 

uniform distribution of keys, particularly in high-load environments. 

This study concludes that Double Hashing offers the best balance of speed and efficiency for 

collision resolution, making it a preferred choice for optimizing hash table performance in 

data-intensive and high-performance computing applications. 

 

Keywords: Hash Tables, Collision Resolution, Linear Probing, Quadratic Probing, Double 
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1. INTRODUCTION 

Hashing is a computational technique that transforms input data into a fixed-size numerical 

value, known as a hash code, using a mathematical function called a hash function. This process 

allows data to be efficiently indexed and retrieved, particularly in a structure known as a hash 

table. 

A hash table, also called a hash map, is a key-value data structure used for fast data access. It 

stores data in an array format, where each position, referred to as a bucket, is accessed via a 

hash code derived from the key. Hash tables are widely utilized in applications such as database 

indexing, caching systems, and network routing because of their average-case time complexity 

of O(1) for insertion, deletion, and search operations (Comen et al., 2009). 

However, one of the major issues encountered in hash tables is collision—a scenario where 

two or more keys are assigned to the same bucket. Handling such collisions effectively is 

essential to maintaining the performance of the data structure. 

Hashing is also often used to implement data structures like dictionaries. It offers one of the 

fastest mechanisms for data retrieval, bypassing the need for sequential or index-based searches 

by calculating the direct memory location of the data. 
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A hash table maps keys to values using an underlying array of fixed size, with index positions 

ranging from 0 to m - 1. Each position or bucket in this array stores a value, and the location is 

determined by a hash function. 

A hash function is a mathematical formula used to convert keys into hash codes. These codes 

act as indices for storing values in a hash table. For example, using the division method, a hash 

function is expressed as: 

f(k) = k mod m 

where:  k is the key 

  m is the size of the hash table 

                        % is the modulo operator 

If key 90 is hashed using f(90) = 90 mod 9, the resulting index is 0. Similarly, f(58) = 58 mod 

7 = 2, placing the value at index 2. 

Collision occurs when multiple keys are mapped to the same index. For example, hashing 66 

using f(66) = 66 mod 8 = 2 may conflict with an existing value already stored at index 2. 

To resolve collisions, several open addressing methods are employed: 

• Linear Probing: Sequentially checks the next available index. 

Quadratic Probing: Uses a non-linear interval to reduce clustering. 

• Double Hashing: Utilizes a second hash function to compute probe sequences and avoid 

primary clustering. 

• Double Hashing: Utilizes a second hash function to compute probe sequences and avoid 

primary clustering. 

Illustration of Linear Probing:  

Using h(x) = x % 7, if inserting 30, it maps to slot 2. If the next key, say 29, also hashes to an 

occupied index, the algorithm checks the next slots until a free one is found. 

Quadratic Probing uses the formula:  

h(k, i) = (h(k) + i²) mod n 

Double Hashing employs:  

Index = (h1(k) + i * h2(k)) mod table size 

Synthetic data are artificially generated datasets designed to replicate the statistical properties, 

structural patterns, and relationships of real-world data, yet without containing any actual 

personal, sensitive, or identifiable records. Within computing and machine learning, such data 

are typically created through techniques like generative adversarial networks (Lu et al., 2023). 

In C++, synthetic data can be generated using custom algorithms that produce values based on 

specific statistical distributions, allowing precise control over load factors and collision rates. 

 

2.   RELATED WORKS 

Hashing is a fundamental technique in computer science used to map data to a fixed-size value 

(hash code) for efficient storage and retrieval. Collision resolution is a critical aspect of 

hashing; as different keys may produce the same value. Various strategies such as linear 

probing, quadratic probing, and double hashing are employed to handle collisions. 

Collision resolution is a fundamental challenge in hash table implementation, significantly 

affecting the efficiency of data storage and retrieval. Hash tables use a hash function to map 

keys to an index in an array; however, when two keys produce the same index, a collision 

occurs (Knuth, 2022). Effective collision resolution strategies are critical for maintaining high 

performance in terms of insertion, search, and deletion operations. 

Halkarnikar et al. (2024) introduced binary probing, a new collision resolution technique that 

demonstrated performance improvements over traditional methods. Fatourou et al. (2022) 

proposed a wait-free resizable hash table that performs efficiently in dynamic environments. 

http://www.iiardjournals.org/


 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No. 5 2025 www.iiardjournals.org online version 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 36 

Wang (2025) presented the Bathroom Model, an adaptive probing strategy inspired by human 

restroom stall selection. This technique dynamically adjusts search patterns based on observed 

occupancy to enhance lookup efficiency in open-addressing hash tables. 

Peter et al. (2014) presented an approach for resolving collision in a one-dimensional array. 

The technique concatenates the key and the h(k) and inserts it in the first empty bucket in the 

hash table. For example, in a hash table of size 7, h(23) = 23 mod 7, will be placed as 2.23 in 

the first available cell in the hash table. Searching for an element in this technique is linear 

O(n), hence the h(k) will not help in locating the key from the hash table. Hassan et al. (2022) 

also provided a comprehensive review of different hash function types and their applications, 

highlighting their impact on collision resolution strategies. 

Ahmed et al. (2021) analyzed the worst-case performance of several proposed hashing collision 

resolution techniques based on their time complexity at a high load factor environment. It was 

found that almost all the existing techniques have a non-constant access time complexity. 

Collision resolution methods can be broadly categorized into open addressing and chaining. 

Each strategy has advantages and trade-offs depending on the load factor, data size, and hash 

function quality  

In open addressing, when a collision occurs, the algorithm searches for the next available slot 

using a probing sequence. All keys are stored within the hash table.   

Linear probing resolves collisions by checking the next available slot in a sequential manner, 

where i = 0, 1, 2, 3… While it is easy to implement, it suffers from primary clustering, where 

consecutive occupied slots increase search time (Knuth, 2022). 

Quadratic probing resolves clustering issues by checking slots using a quadratic sequence or 

function for probing, where C1 and C2 are constants. This reduces primary clustering but may 

introduce secondary clustering (Cormen et al., 2022)    

Double hashing uses a second hash function to compute the interval between probes. It reduces 

clustering by introducing more randomness in the probing sequence (Mitzenmacher & Upfal, 

2017). 

Quin et al. (2022) developed Adam-Hash, an adaptive and dynamic hashing system tailored 

for large, evolving datasets, supporting dynamic updates such as insertions and deletions. 

 Recent studies have compared hashing techniques empirically using synthetic datasets to 

control for load factor and collision rate. Bello et al. (2014) implemented linear probing, 

quadratic probing, and double hashing in C++ and tested across synthetic workloads, finding 

that double hashing consistently required the fewest probes, followed by quadratic probing, 

while linear probing suffered the most under high loads. 

A hash table is a data structure that stores key-value pairs for efficient data retrieval. It uses a 

hash function to compute an index where the data is stored. The effectiveness of a hash table 

depends on the quality of the hash function and the method used for resolving collisions 

(Cormen et al., 2022).  

Bender et al. (2021) introduced Iceberg hashing, which optimizes space utilization, load factor, 

and lookup performance simultaneously. 

 Pandey et al. (2022) enhanced this further with IcebergHT, focusing on stable and low-

associativity hash tables for high-performance use in persistent memory. 

This research presents the central methods of hash functions, cryptography, and dynamic 

encryption that may be utilized by military personnel to increase the safety, privacy, and 

resistance to sniffing of their communications. This article details many methods and 

algorithms that may be included in laser-guided defensive weapons and vehicles to provide 

safe communication across the system (Hassan et al., 2022).  

Synthetic data generation has become increasingly important in scenarios where real data is 

scarce, sensitive, or requires privacy preservation. Álvarez & Vaz (2022) conducted a 
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comprehensive survey on synthetic data generation methods, emphasizing the role of 

Generative Adversarial Networks (GANs) in producing high-quality synthetic datasets. Their 

work highlights the advancements in synthetic data generation techniques and provides insights 

into evaluation methods to assess the quality and utility of the generated data.  

Although previous studies have explored collision resolution techniques, there is a lack of 

recent research that systematically compares linear probing, quadratic probing, and double 

hashing using synthetic data in C++. Most existing work focuses on either theoretical analysis 

or real-world datasets, but limited attention has been given to controlled synthetic data testing, 

which allows more accurate performance evaluation. Furthermore, prior studies often assess 

individual metrics such as execution time or collision count in isolation, rather than providing 

a holistic comparison across execution time, collision count, and memory usage. 

This research aims to bridge this gap by systematically comparing linear probing, quadratic 

probing, and double hashing under various load conditions, using synthetic data to provide a 

more controlled and reproducible performance evaluation. 

 

3. METHODOLOGY 

3.1.1 Research Method 

This study adopts an experimental quantitative research method. The purpose is to 

systematically evaluate and compare the performance of different collision resolution 

techniques in hash tables through controlled and measurable experiments.\ 

 

Experimental Research 

An experimental approach was selected because it allows for manipulation of variables (i.e., 

different collision resolution techniques) and observation of the effects on performance metrics 

such as execution time, memory usage, and collision count. In this context, each collision 

handling method (linear probing, quadratic probing, and double hashing) serves as an 

independent variable, while the performance outcomes are the dependent variables being 

measured. 

The research was conducted in a controlled environment using synthetic data, ensuring that the 

only changing factor was the collision resolution technique under examination. This control 

strengthens the validity of the comparisons and ensures that observed differences are directly 

attributable to the methods tested, rather than external factors. 

 

Quantitative Approach 

The research is quantitative because it deals with numerical data and statistical analysis. All 

performance metrics were recorded in measurable units: execution time 

(milliseconds/seconds), memory usage (kilobytes/bytes), and number of collisions (count). 

 

3.1.2 Research Objects 

The research objects in this study are the three collision resolution techniques used in hash 

table implementations: Linear Probing, Quadratic Probing, and Double Hashing. 

 

These techniques represent different algorithmic strategies for handling hash collisions in hash 

tables, which are critical to the performance and efficiency of data storage and retrieval 

systems. 

 

In practical terms, each technique was implemented in a C++ environment as a separate hash 

table class or function set. The objects of this research are therefore the algorithmic 
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implementations and their behavior under test conditions, including their execution speed, 

memory consumption, and collision frequency. 

 

3.1.3 Data 

This research utilizes synthetic data generated programmatically to simulate realistic hash table 

workloads. The data consists of randomly generated integer keys ranging from small values 

(1–1000) to large values (100,000+), ensuring a diverse key distribution. Data sizes vary from 

hundreds to thousands of items to simulate different load factors. 

 

3.1.4 Data Collection Techniques 

Multiple techniques were used to collect performance data: 

• Execution Time Measurement: Time taken for insertion, search, and deletion was 

recorded using C++'s Chrono library. 

• Collision Counting: A counter in the implementation tracked probe attempts during 

operations. 

• Memory Usage Tracking: Runtime memory profiling tools estimated consumption. 

• Data Recording: All data was structured into tables for analysis, with separate logs for 

each technique and dataset size. 

 

3.1.5 Data Analysis 

The data was analyzed using quantitative statistical techniques: 

• Execution Time: Averaged over multiple runs, excluding outliers. 

• Number of Collisions: Directly measured total collisions. 

• Memory Usage: Confirmed minimal difference among techniques. 

    

Analytical Methods: 

• Descriptive Statistics: Averages and percentages. 

• Comparative Tables: Side-by-side contrasts. 

• Percentage Improvement Calculations: Quantified performance gains. 

• Trend Analysis: Assessed scalability and robustness. 

Results were presented in tables to facilitate comparison and conclusions were drawn based on 

trends and statistical differences. 

 

3.2 Hash Table Implementation 

The hash table is built using an array-based structure in C++, with the size dynamically adjusted 

based on a defined load factor threshold. This minimizes overflow and clustering. 

Multiplicative hashing is used as the base function: 

           hash(key) = floor (m * ((key * A) mod 1) 

 

3.3 Collision Resolution Techniques 

The following techniques are implemented and compared: 

a. Linear Probing: Sequentially checks the next available slot. 

b. Quadratic Probing: Checks slots using a quadratic interval formula. 

c. Double Hashing: Uses a secondary hash function for resolving collisions. 
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3.4 Sample C++ Code 

Sample implementation of the hash table using Linear Probing: 

 

#include <iostream> 

using namespace std; 

const int TABLE_SIZE = 10; 

class HashTableLinear { 

private: 

    int table[TABLE_SIZE]; 

public: 

    HashTableLinear() { 

        for (int i = 0; i < TABLE_SIZE; i++) 

            table[i] = -1; 

    } 

 

    int hashFunction(int key) { 

        return key % TABLE_SIZE; 

    } 

  void insert(int key) { 

        int index = hashFunction(key); 

        int i = 0; 

        while (table[(index + i) % TABLE_SIZE] != -1) 

            i++; 

        table[(index + i) % TABLE_SIZE] = key; 

    } 

 

    void display() { 

        for (int i = 0; i < TABLE_SIZE; i++) 

            cout << i << " => " << table[i] << endl; 

    } 

}; 

 

int main() { 

    HashTableLinear ht; 

    ht.insert(5); 

    ht.insert(15); 

    ht.insert(25); 

    ht.display(); 

    return 0; 

} 

 

Sample implementation of the hash table using Quadratic Probing: 

 

#include <iostream> 

using namespace std; 

 

const int TABLE_SIZE = 10; 

class HashTableQuadratic { 

http://www.iiardjournals.org/
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private: 

    int table[TABLE_SIZE]; 

public: 

    HashTableQuadratic() { 

        for (int i = 0; i < TABLE_SIZE; i++) 

            table[i] = -1 

    } 

 

    int hashFunction(int key) { 

        return key % TABLE_SIZE; 

    } 

  void insert(int key) { 

        int index = hashFunction(key); 

        int i = 0; 

        while (table[(index + i * i) % TABLE_SIZE] != -1) 

            i++; 

        table[(index + i * i) % TABLE_SIZE] = key; 

    } 

 

    void display() { 

        for (int i = 0; i < TABLE_SIZE; i++) 

            cout << i << " => " << table[i] << endl; 

    } 

}; 

 

int main() { 

    HashTableQuadratic ht; 

    ht.insert(5); 

    ht.insert(15); 

    ht.insert(25); 

    ht.display(); 

    return 0; 

} 

 

Sample implementation of the hash table using double hashing: 

int hash1(int key, int tableSize) { 

    return key % tableSize; 

} 

int hash2(int key, int prime) { 

    return prime - (key % prime); 

} 

void insert(int key, int table[], int tableSize, int prime) { 

    int index = hash1(key, tableSize); 

    int step = hash2(key, prime); 

    while (table[index] != -1) { 

        index = (index + step) % tableSize; 

    } 

    table[index] = key; 

} 

http://www.iiardjournals.org/
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3.5 Evaluation Metrics 

The evaluation focuses on execution time (milliseconds), number of collisions, and memory 

usage (KB). Tests are conducted with varying data volumes and load factors to observe the 

scalability and efficiency of each technique. 

 

3.6 Experimental Setup 

The implementation and testing were done in a C++ development environment using synthetic 

datasets of varying sizes. A timer function was used to capture execution time, and a memory 

tracker to estimate memory consumption. 

 

3.7 Result Comparison Table 

Below is a sample comparison of the techniques: 

 

Table 1: 

Techniques Execution Time 

(ms) 

Memory Usage 

(KB) 

 Number of      

Collisions 

Linear Probing 15 120 10 

Quadratic Probing 12 122 6 

Double Hashing 10 125 3 

 

Table 2: Performance Comparison – Linear Probing Vs Quadratic Probing 

 

Quadratic probing is 95% - 98% faster than linear probing. Collisions are significantly reduced. 

Memory usage is unaffected, meaning quadratic provides a free performance boost over linear 

probing. 

 

Table 3: Performance Comparison – Quadratic Probing vs Double Hashing 

Metric Quadratic Probing Double Hashing Improvement 

Insertion Time (2000 

items) 

0.177 Sec 0.152 Sec 14% Faster 

Search Time (500 

lookups) 

0.042 Sec 0.036 Sec 14% Faster 

Deletion Time (250 

deletions) 

0.011 Sec 0.003 Sec 72% 

Total Collisions 360,534 360,594 Negligible Difference 

Memory Usage 

(Bytes) 

Negligible Negligible Same 

Metric Linear Probing Quadratic Probing Improvement 

Insertion Time (2000 

items) 

4.5 Sec (Too Slow) 0.1777 Sec 96% 

Search Time (500 

lookups) 

1 Sec 0.042 Sec 95% 

Deletion Time (250 

deletions) 

0.5 Sec 0.011 Sec 98% 

Total Collisions Very High (m+) 360,538 60% fewer collisions 

Memory Usage Negligible Negligible Same 
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Double hashing is a good alternative to quadratic probing. It offers marginally better 

performance in terms of speed, while maintaining similar memory usage and collision rates. 

 

4. RESULT AND DISCUSSIONS 

4.1 Experimental Setup 

The experimental tests were conducted using synthetic data consisting of random integers. 

Each collision resolution method was tested under identical conditions using a fixed-size hash 

table. The experiments measured the average execution time for inserting, searching, and 

deleting 1,000 random elements for each method. 

4.2 Performance Metrics 

The performance of the hash table implementations was assessed using the following metrics;  

 

• Execution Time (in milliseconds) for insert, search, and delete operations 

• Load Factor 

• Load Factor Management  

• Memory Usage and Efficiency 

 

4.3 Comparative Results and Discussion 

Table 4 below shows the performance metrics for the three collision resolution 

techniques: 

Technique Insert Time (ms) Search Time (ms) Delete Time (ms) 

Linear Probing 0.53 0.48 0.50 

Quadratic Probing 0.47 0.42 0.45 

Double Hashing 0.39 0.37 0.40 

 

As shown in the table, Double Hashing outperformed both Linear and Quadratic Probing in all 

three categories. It demonstrated the lowest execution times, highlighting its efficiency in 

minimizing collisions and clustering. Quadratic Probing came next, followed by Linear 

Probing, which exhibited higher clustering and thus slower performance.  

 
Figure 1: Graphical Representation comparing insert, search, and delete times for each  

                 collision resolution technique 
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5.  CONCLUSION 

This study aimed to enhance the efficiency of hash tables by refining collision resolution 

techniques through the use of synthetic datasets.  

The experimental results highlighted the superior performance of Quadratic Probing and 

Double Hashing over Linear Probing. Among the two, Quadratic Probing yielded the lowest 

number of collisions (101), outperforming Double Hashing (118 collisions) under identical 

conditions. 

 

Performance Evaluation: 

Insertion Time: Both Quadratic Probing and Double Hashing achieved minimal insertion 

delays, with Quadratic Probing demonstrating a slight edge. 

Search Time: Lookup times were nearly equivalent for both techniques, indicating that, under 

moderate load, the choice of collision resolution strategy has a minimal impact on search 

efficiency. 

Memory Consumption: Both methods maintained low memory overhead due to the compact 

dataset and optimized data structure implementation. 

Employing synthetic data facilitated a controlled testing environment, which ensured 

consistent results and allowed for precise evaluation of each technique under deliberately 

induced collisions. This confirmed the robustness of advanced collision-handling methods. 

 

5.1 Limitations 

While the findings offer valuable insights, the study is not without limitations: 

Dataset Scope: The experiments were limited to a relatively small synthetic dataset of 150 key-

value pairs. Although effective for identifying trends, a larger dataset may reveal additional 

nuances in performance. 

Fixed Table Size: The hash table operated with a fixed size, without accommodating changes 

in load. Different load factors or the inclusion of dynamic resizing mechanisms could influence 

the performance outcomes. 

 

5.2 Future Work 

In light of the study’s constraints and findings, several potential directions for future research 

are proposed 

Dynamic Resizing: Investigating automatic resizing techniques when the load factor exceeds a 

set threshold could enhance performance and scalability. 

Hybrid Collision Resolution: Exploring hybrid approaches that combine the strengths of 

Quadratic Probing and Double Hashing may yield more adaptive and efficient solutions in 

varying data load scenarios. 
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APPENDIX A: FULL SYTHETIC DATASET 

The synthetic dataset used in this research consists of key-value pairs generated for simulation 

and tasting purposes. Due to the dataset’s length, only a sample is shown below. The complete 

dataset includes over 150 entries and can be reviewed in the attached CSV file below. 

synthetic_data.csv

 
 

 

 

 

Key Value 

516 769 

783 748 

437 243 

615 37 

319 870 

646 258 

981 845 

15 35 

527 408 

145 373 

969 305 

424 939 

87 298 

155 164 

978 156 

94 237 

71 973 

692 527 

558 101 

976 370 

770 183 
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